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Abstract

Adaptive systems rely on recursive estimation of a firmly bounded complex-
ity. As a rule, they have to use an approximation of the posterior proba-
bility density function (pdf), which comprises unreduced information about
the estimated parameter. In recursive setting, the latest approximate pdf is
updated using the learnt system model and the newest data and then ap-
proximated. The fact that approximation errors may accumulate over time
course is mostly neglected in the estimator design and, at most, checked ex
post. The paper inspects this problem and concludes that a sort of forget-
ting (flattening) is an indispensable part of approximate recursive estimation
algorithms. The conclusion results from Bayesian paradigm complemented
by the minimum cross-entropy (also known as Kullback-Leibler divergence,
KLD) principle. Claims of the paper are illustrated on approximate recursive
estimation of the mode and scaling factor of Cauchy pdf.

Keywords: approximate estimation; adaptive systems; recursive estimation;
Kullback-Leibler divergence; forgetting

1. Introduction

Model-based adaptive control [3], computer intensive single-pass data pro-
cessing [10] and various practical applications [1] strongly rely on recursive
estimation. Mostly, the exact recursive estimation is infeasible and a sort of
approximation coping with computational complexity is used [7]. Without a
special care, approximation errors may accumulate to the extent that spoils
the estimation. Stochastic approximations [4] represent dominating tool used
for analysis, whether a specific estimator suffers this problem or not. Design
of estimators avoiding it is less developed and mostly relies on stochastic
Lyapunov stability theory [20]. It depends significantly on a difficult choice
of Lyapunov function. Both analysis and design mostly focus on a point
estimation.

Since the estimates often serve a subsequent dynamic decision making,
the Bayesian estimation, exploiting the pdf of unknown parameter, became
an essential tool [5]. Inspection of the approximation-errors influence has
been neglected in this context. The collection of papers [13, 14, 15, 16, 17] is
an exception that analyses schemes without accumulation of approximation
errors. The papers conclude that this accumulation is avoided if and only if
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values of a finite collection of fixed linear functionals acting on logarithms of
the posterior pdfs are used for construction of the approximate posterior pdf.
The estimator design then reduces to the choice of functionals, whose values
serve as information-bearing constraints used in approximation. This useful
class of statistics is, however, too narrow to include many cases of practical
interest. Thus, it is desirable to inspect approximate recursive Bayesian
estimation employing statistics that lead to approximations with non-zero
errors caused by the recursive treatment but prevent their accumulation.

The discussed problem is wide-spread and mostly ignored. Pointing to its
existence and proposing a possible way to overcome it form the core of this
brief paper. The problem is addressed from the Bayesian viewpoint. The for-
mulation respects the ignorance of the exact pdf (Radon-Nikodým derivative
with respect to a dominating measure [22]) to be approximated. Since the
recursively stored information about this exact pdf is inevitably partial, the
minimum KLD principle [23] serves for its completion. The considered com-
pletion recovers the use a common “naive” approximate recursive estimation
when applied to a forgotten approximate pdf.

Section 2 formulates the problem. Core Section 3 provides its Bayesian
solution employing a variable forgetting factor. Its simple data-based choice
is proposed in Section 4. An example illustrating claims of the paper is in
Section 5. Section 6 contains closing comments.

2. Addressed Problem

A parametric model mt(Θ) describes system output yt in discrete time
t ∈ {1, 2, . . .}. The model is a pdf of yt conditioned on the prior information,
on the past measured outputs y1, . . . , yt−1, on the past and current applied
inputs u1, . . . , ut and on an unknown parameter Θ belonging to a subset Θ?

of a finite dimensional space. At time t− 1, the full information conditions
the parameter Θ through the conditional exact pdf ft−1 = ft−1(Θ). This pdf
evolves according to the Bayes’ rule

ft(Θ) ∝ ft−1(Θ)mt(Θ) for all Θ ∈ Θ?, (1)

where ∝ means equality up to normalisation. This form is valid under the
natural conditions of control [21], asserting that Θ is unknown to the input
source. The recursion (1) starts from a user-supplied prior pdf f0 = f0(Θ)
describing the prior information.
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In the considered situation, the exact pdf ft is too complex to be handled.
Therefore, it is replaced by an approximate pdf f̂t. The pdf f̂t is a projection
of ft on a user-selected set f̂?t of feasible pdfs. In [6], it was shown that the
optimal pdf Ôft ∈ f̂?t approximating optimally the exact pdf ft is to be a
KLD-minimiser D(ft||̂f) [19]

Ôft∈ arg min
f̂∈f̂?t

D(ft||̂f)= arg min
f̂∈f̂?t

∫
Θ?

ft(Θ) ln

(
ft(Θ)

f̂(Θ)

)
dΘ. (2)

Since the direct use of (2) with ft evolving according to (1) is prevented by
the problem definition, the recursive evaluation without an additional error
should instead evolve the optimal pdf Ôft, i.e., to realise the map(

mt(Θ), Ôft−1(Θ)
)
→ Ôft(Θ), ∀Θ ∈ Θ?. (3)

The papers [13, 14, 15, 16, 17] mentioned in Introduction have shown that
such a construction is possible if and only if the sets f̂?t are delimited by a finite
collection of values of linear time-invariant functionals Fj(ln(ft)) fulfilling
Fj(1) = 0, j = 1, . . . , J . However, this is not the case of most commonly
stored statistics, for instance, the mean and covariance values in unscented
approximation [12], the likelihood values on a variable (e.g., Monte Carlo
generated) grid [9], statistics determining finite Gaussian mixtures with a
fixed number of components [2], statistics yielded by variational Bayes [24]
etc.

Due to the non-commutativity of the Bayes rule (1) and projections de-
termined by the discussed techniques, the optimal recursive approximation
(3) is not reachable. Consequently, instead of Ôft, only an approximate pdf
f̂t ∈ f̂?t can be evolved. Then (3) is replaced by(

mt(Θ), f̂t−1(Θ)
)
→ f̂t(Θ), ∀Θ ∈ Θ?. (4)

It is mostly constructed in the following naive way:

Define f̃t(Θ) ∝ f̂t−1(Θ)mt(Θ), ∀Θ ∈ Θ?,

Find f̂t ∈ arg min
f̂∈f̂?t

D(̃ft||̂f), (5)

often with other proximity measures than the KLD considered. Let us stress
that the optimal but infeasible projection (3) with the definition (2) would be

Define f̆t(Θ) ∝ ft−1(Θ)mt(Θ), ∀Θ ∈ Θ?,

Find Ôft ∈ arg min
f̂∈f̂?t

D(̆ft||̂f). (6)

4



Here the question arises how to construct the map (4) respecting f̂t−1 6= ft−1

or, in other words, how to modify the naive recursive approximate estimation
(5) so that the approximation-errors accumulation is counteracted.

3. Solution

At time t−1, the approximate pdf f̂t−1 represents the available information
about the exact pdf ft−1. It differs both from the optimal approximate pdf
Ôft−1 and from the unknown exact pdf ft−1. The already cited result [6]
implies that the approximate pdf f̂t−1 is acceptable if and only if there is a
finite, ideally small, non-negative βt−1 such that

D(ft−1||̂ft−1) ≤ βt−1. (7)

The axiomatically justified minimum KLD principle [23] recommends to re-
place the unknown ft−1 by a pdf λft−1 with the smallest KLD on a pdf repre-
senting the information before processing the information contained in f̂t−1

and βt−1. The prior pdf f0(Θ) is a natural descriptor of such (vague) informa-
tion. The choice of λft−1 is made in f?t−1 containing pdfs ft−1 on Θ? meeting
(7). Thus, the minimum KLD principle recommends the choice

λft−1 ∈ arg min
ft−1∈f?t−1

D(ft−1||f0). (8)

The Kuhn-Tucker optimality conditions [11] provide directly the solution
of this task. It is determined by a factor λt−1 (motivating the notation λft−1)

λt−1 = (1 + βt−1)−1 ∈ [0, 1] (9)

and has the form λft−1 ∝ f
(1−λt−1)
0 f̂

λt−1

t−1 where

λt−1 = 0 if D(f0||̂ft−1) < βt−1

λt−1 solves D( λft−1||̂ft−1) = βt−1 otherwise. (10)

λft−1 comprises all information about Θ in the remembered elements f0, f̂t−1,
βt−1, thus it is legitimate to identify λft−1 with ft−1. Therefore, we can
propagate it via the Bayes rule (1), and repeat the procedure for all t:

Define f̃t ∝ f
(1−λt−1)
0 f̂

λt−1

t−1 mt

Find f̂t ∈ arg min
f̂∈f̂?t

D(̃ft||̂f), (11)
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i.e., the naive way (5) recovers after the use of a stabilised forgetting [18]
applied to the approximate pdf f̂t−1.

Many estimation methods employ similar techniques to avoid accumula-
tion of errors, see, e.g., the Monte Carlo methods in recursive parameters
estimation [8]. The above arguments only justify the need of a technique of
this type and recommend its form (10). Note that the naive way (5) coincides
with (11) for λt−1 = 1. Then, Equation (9) implies βt−1 = 0, which induces
f̂t−1 = ft−1. This indicates that the derived extension (11) reduces smoothly
to the naive way (5) which is adequate only in non-recursive (one-step) esti-
mation. Obviously, the limit case λt−1 = 1 is rather exceptional.

4. Data-based Choice of λt

Prior knowledge of βt−1 and thus of λt−1 in (10) can hardly be supposed.
Their dependence on time and data makes the estimation of λt−1 difficult.
However, the recursive nature of the approximate estimator (11) implies that
an incorrectly chosen λt−1 only increases the approximation error, which is
counteracted by forgetting applied in the subsequent estimation steps. Thus,
even an extremely simple guess of λt−1 is expected to serve the purpose.
This conjecture, whose validity is experimentally supported and illustrated
in Section 5, led us to the following use of the standard Bayesian hypotheses
testing:

• Hypotheses Hk : λt = λk ∈ [0, 1], k = 1, 2, λ1 6= λ2, are formulated.

• The approximate recursive estimation (11) is run in parallel for λt = λk
yielding the pdfs f̂t;k, for k = 1, 2.

• The values of the predictors
∫

Θ?
λk̂ft−1(Θ)mt(Θ) dΘ are evaluated during

the projection step and used for incrementing log-likelihoods lt−1;k of
Hk, k = 1, 2.

• The hypotheses are undecided until ∆lt = |lt;1− lt;2| crosses a threshold
h ∈ [3, 7] implying that the probability (1 + exp(lt;2 − lt;1))−1 of H1 is
close to 1 or 0.

• The better (even not winning yet) Hk provides parameter estimates
exploited by the supported adaptive system.

• The poorer of Hk is discarded when ∆lt > h.
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• A new hypothesis is constructed to replace the discarded one. It uses
the latest λ̂ft−1 of the winning hypothesis as the pdf to be updated and
a newly selected λ generated in [0, 1]. At present, the middle between
the winning λk and an end-point of a sub-interval of [0, 1] is chosen.
The right end is chosen if the straight line through the log-likelihood
values increases, the left end otherwise.

This algorithm can be improved in many directions: i) more hypotheses can
be used; ii) the search for a new λk can emulate a derivative-free maximi-
sation of log-likelihood normalised by the number of undecided steps; iii)
probabilities of hypotheses can be evaluated on a fixed λ grid and combined
with a second-level forgetting [25]. Various tested approaches led to similar
results.

5. Illustrative Example

This section illustrates the discussed drawback of the naive way and the
advantage of the proposed technique using even the simple choice of the
factor λk.

Experiment setup Mutually independent scalar uncontrolled system
outputs yt were generated from the Cauchy distribution mt(Θ) ∝

√
r(1 +

(yt − µ)2/r)−1 with the mode µ = 1 and scaling factor r = 0.1.
The approximate pdfs f̂t of the unknown parameter Θ = (µ, r) were searched

in the normal inverse-gamma (NiΓ) class. For it, as for any member of pdfs
conjugated to exponential family [5], the approximation (11) reduces to mo-
ment matching. The moments were evaluated by a straightforward Monte-
Carlo procedure with 500 samples generated from f̂t−1. This intentionally
high number of samples suppresses possible side-effects of numerical integra-
tion.

The recursive estimation run exactly according to (11) and with λk chosen
according to Section 4. The NiΓ prior pdf f̂0 had zero expectation of µ with
unit variance; expectation of r equal 10−4 and the number of degrees of
freedom equal 3. The initial forgetting factor λ0;k ∈ {0.7, 0.8} were allowed
to change within the range [2/3, 1], the threshold h = 5 was used.

Commented results The naive way (5) was compared with its pro-
posed modification (11). Selected sample statistics presented in Table 1 for
T = 500 and T = 5000 output samples provide numerical performance in-
dicators. Furthermore, longer simulation runs were performed confirming
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stability of the method. Each time instant, the hypothesis with a higher
likelihood supplied parameter estimates compared with the true value.

naive proposed naive proposed
T = 500 T = 500 T = 5000 T = 5000

mean 0.1463 0.0111 0.1281 0.0072
median 0.1348 0.0080 0.1260 0.0077
std 0.0310 0.1198 0.0115 0.0616
rmse 0.1495 0.1203 0.1286 0.0620

Table 1: Sample statistics of difference between modes of f̂t and µ.

Table 1 shows: i) root mean square error (rmse) is smaller for the pro-
posed technique; ii) biases, visible in mean values, are predominantly respon-
sible for rmse of the naive way, which sticks at biased value even in long run
(cf. small standard deviation, std); iii) biases of the proposed modification
are significantly smaller than those offered by the naive way; iv) smaller bi-
ases are reached at the cost of a larger standard deviation std (this volatility
reflects that the estimation respects its approximate nature) but altogether
they lead to smaller rmse; v) closeness of mean and median in respective
columns indicates symmetry of distributions of the inspected deviations.

Note that the algorithm performance is influenced by “tuning knobs”,
which are fixed in the presented experiments. Unreported evaluations lead
to the conclusions on their influence on results: very weak for the threshold
h ∈ [3, 7]; negligible for the initial values of forgetting factors; weak for
statistics of the prior pdf f0; mild for the number of Monte Carlo samples
needed for the projection and prediction. This indicates a solid robustness
of the method with respect to its initial setting.

6. Concluding Remark

This brief paper indicates that a real need exists for constructive ways
counteracting the accumulation of approximation errors in a range of ap-
proximation techniques including, e.g., unscented transformations, recursive
Monte Carlo methods, variational Bayes etc. The problem is especially ur-
gent in parameter estimation, where consequences are not damped by a non-
trivial stable state evolution, but the discussed errors surely degrades quality
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of various filters, too. The proposed solution provides a way to visible im-
provements.
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